
JOUKNAL OF COMPUTATIONAL PHYSICS 57, 454471 (1985) 

Complex Coordinate Methods for 
H.ydrodynamic instabilities and Sturm-Liouville 

Eigenproblems with an Interior Singularity 

JOHN P. BOYD 

Department of Atmospheric and Oceanic Science, 
University of Michigan, 2455 Hayward Avenue, Ann Arbor, Michigan 48109 

Received September 20, 1983 

Calculations of inviscid, linearized waves in fluids are very difftcult when a mean wind or 
current U(y) is included because the differential equation is singular wherever U(y) = c, the 
phase speed. These “critical latitude,” “ critical level,” or “critical point” singularities are par- 
ticularly severe for Chebyshev methods since these global expansion algorithms are very sen- 
sitive to the analytic properties of the solution. A simple remedy is described: by making a 
change of coordinates y =f(x) where y is the original variable and x is the new coordinate 
with f(x) a complex function, one can solve the problem on an arc in the complex plane that 
makes a wide detour around the singularity. Specific guidelines for choosing f(x) for different 
problems are given in the text. Results are impressive: for an eigenvalue problem with a pole 
in the middle of the original real interval (a “Sturm-Liouville problem of the fourth kind”), 
just six basis functions suffice to calculate the real and imaginary parts of the lowest eigen- 
value to within 1.4 %. For strong instability, i.e., modes whose phase speeds have large 
imaginary parts, the complex mapping is unnecessary because the critical latitudes are com- 
plex and distant from the real axis. Even so, the mapping is useful for instability problems 
because it can be used to make calculations for very slowly growing modes to follow the 
changes in c right up to the “neutral curve” where the imaginary part of c= 0. Although 
especially valuable for spectral algorithms, the same trick can be applied with finite difference 
methods also. The main disadvantage of the algorithm is that the eigenfunction must be 
calculated in a second, separate step, but this is usually a minor flaw in comparison to the 
complex mapping’s virtues for coping with singular eigenvalue problems. 0 1985 Academic Press, 

Inc. 

1. INTRODUCTION 

Hydrodynamic stability and wave problems often require solving differential 
equations with singularities on or near the computational domain. These 
singularities, usually called “critical latitudes” or “critical points,” create severe 
numerical difficulties. The purpose of this work is to show how one can obtain 
good results for a subset of such problems by making a transformation of the 
original variable y to a new variable x such that the problem is effectively solved on 
a curve in the complex y-plane rather than on the original interval on the real y- 
axis. With proper choice of map parameter, one can loop the curve of integration 
away from the singularity so that it does not degrade the numerical accuracy. 
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We shall discuss only eigenvalue problems because the method is not useful for 
ordinary boundary value problems. The difficulty is that by solving the differential 
equation on a complex curve, we sacrifice the solution u(y) along the real axis, so 
the complex mapping method is useful only when something other than u(y), i.e., 
the eigenvalue, is the principal goal of the calculation. 

The great risk in a linear eigenvalue computation is that of missing modes, so 
Chebyshev polynomial methods in combination with the QR algorithm for solving 
the resulting matrix eigenvalue equation have become very popular for 
hydrodynamic instability problems following Orszag [ 11. For self-adjoint 
problems, there are any number of foolproof methods, but instability problems are 
not self-adjoint and have complex eigenvalues. A local iterative method will cer- 
tainly find some eigenvalues, but there is a real danger of missing other important 
modes of instability. The QR algorithm is globally convergent and does not need to 
be supplied with first guesses for the eigenvalues, so Orszag’s Chebyshev-QR 
method is very robust: it will fail to find a mode using N Chebyshev polynomials 
only if that mode is oscillating so rapidly that N polynomials cannot resolve it. 

The motivation for this paper is that Chebyshev methods are extremely sensitive 
to singularities on and near the real axis because the Chebyshev series is a global 
expansion, i.e., a single representation of u(y) that must fail or succeed over the 
whole computational interval. Finite difference methods are much less sensitive to 
singularities because they are based on local Taylor expansions, and so the critical 
latitude will be irrelevant as long as it is more than one grid length away from the 
computational interval. Unfortunately, finite difference methods are much less 
accurate than spectral methods and thus require a much larger value of N, the 
number of degrees of freedom, to resolve the same wave. Even more unfortunately, 
the operation count of the QR algorithm grows as 0(N3), whether the matrix is 
sparse or full. Thus, finite difference-QR methods are usually too expensive, 
Chebyshev-QR schemes won’t work at all, and non-QR algorithms may miss eigen- 
values. The complex mapping method is a way of escaping from these grim alter- 
natives. 

This technique is not a panacea or cure-all; it is unnecessary for-strong instability 
because the critical latitudes are at complex values of y with large imaginary parts, 
and it may be ineffective for the Orr-Sommerfeld equation because the critical 
latitudes are so close to the boundaries that even a complex path of integration can- 
not get away from them. These “counter-cases” are discussed in Section 2. On the 
other hand, the mapping procedure is useful for finite difference methods, too, for 
the purpose of determining the “neutral curve” in parameter space where the flow 
makes the transition from stability to instability. (See, for example, Boyd and 
Christidis [2, 31.) 

Section 2 describes in detail several classes of problems for which mapping is very 
useful and a few for which it is not. Section 3 will explain how to transform the dif- 
ferential equation and offer several simple choices of mapping. Section 4 will discuss 
the numerical analysis of mapping methods and some numerical illustrations. The 
final section is a summary and prospectus. 
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2. CASES, COUNTER-CASES, AND ALTERNATIVES 

The complex mapping method is useful for 

(i) hydrodynamic instability problems with complex eigenvalues of small or 
zero imaginary part, and 

(ii) Sturm-Liouville eigenproblems of the “fourth kind” as defined by 
Boyd [4]. 

In both cases, the singularity in the differential equation arises at that point 
(“critical latitude,” “ critical level,” or “critical point”) where the local value of the 
mean flow, U(y), is equal to the wave phase speed c. For the stability calculation, c 
is the eigenvalue, so complex c implies that the critical latitude y, defined by 
U(y,.) = c, is complex, too. It is only when the imaginary part of c is small or zero 
that the singularity slows down the convergence of the Chebyshev series. However, 
the “neutral curve,” which is that curve in parameter space defined by Im(c) = 0, is 
always a primary goal because it marks the boundary between stability and 
instability. Thus, one is always in trouble in a hydrodynamic instability problem in 
the neighborhood of the neutral curve; even a less sensitive finite difference method 
is doomed when Im(c) = 0. 

For the Sturm-Liouville problem of the “fourth kind,” c is always real and 
therefore the critical latitude is always on the real axis. A typical example, taken 
from Boyd [4] with the coordinate y shifted so that y = 0 is the critical latitude, is 

un + [l/v - A]u = 0 with u(A)=u(B)=O; A CO; B>O (2.1) 

where the double prime denotes double differentiation and where 1 is the eigen- 
value. If A and B, the boundaries, are both of the same sign, then (2.1) is a Sturm- 
Liouville eigenproblem of the first kind; that is to say, a self-adjoint problem with 
no singularities on y E [A, B]. Nineteenth century theorems then prove that I is 
always real. 

When A and B are of opposite sign, however, the singularity at y =0 is in the 
interior of the interval, and the eigenvalues of (2.1) are complex. There are Sturm- 
Liouville problems of the second and third kind (as defined in [4]) for which the 
singularities of the differential equation at the boundaries or interior, respectively, 
are only “apparent” in the sense that all the eigenfunctions are analytic at these 
singularities (Boyd [4]). In contrast, the eigenfunctions of (2.1) have logarithmic 
branch points at y = 0. Indeed, (2.1) is not even properly posed until one specifies 
whether the branch cut should be in the upper or lower complex y-plane. (The 
argument that shows that the upper half-plane is the correct choice in fluid 
mechanics is given in Boyd [4].) 

For Sturm-Liouville problems of the fourth kind, the critical latitude is always 
on the real y-axis, so one is always in need of some algorithm for coping with it. In 
compensation, the location of the critical latitude is always known in advance 
because the phase speed c and the mean flow U(y) are both part of the prespecified 
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data of the problem. Thus, Sturm-Liouville problems of the fourth kind are par- 
ticularly well suited to the complex mapping technique described below. Some 
explicit results for (2.1) with complex mapping and the Chebyshev-QR algorithm 
are given in Table II. 

Instability calculations, in contrast, can be one form of “counter-case”: the 
method is useful only for weak instabilities for which the imaginary part of the 
phase speed is small. The reason is that when the imaginary part of the phase speed 
is large, the critical latitude y, will have a large imaginary part, too. When the 
singularity of u(y) is distant from the real interval [A, B], the Chebyshev-QR 
algorithm will work just as well without the mapping as with, and perhaps better. 
Tables III and IV illustrate this for the most rapidly growing modes of the so-called 
“Bickley jet.” As explained above, however, the complex mapping is still needed for 
this same problem to find the neutral curve. 

Another counter-case is provided by the so-called “wall modes” of the Orr- 
Sommerfeld equation 

u “‘‘-2k2u”+k4u=ikR[(U[y]-c)(u”-k*u)-U”u] (2.2) 

where k and R are parameters (“zonal wavenumber” and “Reynolds’ number”). The 
“wall modes” have critical latitudes very close to the boundaries [A, B]. It is not 
possible to deform the contour of integration so that it does not pass close to the 
critical latitude because both the old and new contours must intersect both boun- 
dary points, y = A and y = B. Since these boundary points are very close to the 
complex critical latitudes of (2.2), one is simply stuck with a very difficult numerical 
problem, and it may be just as efficient to solve (2.2) without mapping as with it. 
Table I below and Section 4 suggest, however, that the complex mapping may be 
surprisingly effective even for critical latitudes close to the endpoints, so it is not 
possible to definitively label the Orr-Sommerfeld equation as a “case” or “counter- 
case” at the present time. 

In point of fact, one can obtain fairly good results for (2.2) without mapping- 
albeit at the expense of using 3540 Chebyshev polynomials [ I]-because the 
critical latitudes of (2.2) are technically not singularities of the differential equation. 
The terms on the L.H.S of (2.2) represent a viscous dissipation which smears out 
the logarithmic singularity into a thin, non-singular transition region. In practice, R 
is so large that the transition region is very narrow, so resolving this neighborhood 
of the critical latitudes is still the major numerical challenge. Because the critical 
latitudes are so close to the boundaries, however, this weak viscosity may do as 
much for numerical efficiency as any mapping could. 

Indeed, an artificial computational damping has been the principal means for 
coping with critical latitudes in the past. The usual Laplacian viscosity leads to a 
fourth order equation like (2.2), but Simmons [S] deliberately chose a damping 
proportional to the biharmonic operator, which gave rise to an equation similar to 
(2.2), but of sixth order. The motive for the higher order diffusion is that it damps 
different length scales proportional to the fourth power of the wavenumber whereas 
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an ordinary viscosity damps as the square of the wavenumber. Since the eigen- 
function is smooth except very close to the singularity, the biharmonic diffusion 
provides very strong damping around the critical latitude but has almost no effect 
outside the neighborhood of the singularity. 

In some cases, replacing the inviscid second order differential equation by a sixth 
order equation is inefficient and undesirable, so Boyd [6] used a simple, scale- 
independent friction in combination with a real mapping of the coordinate y that 
provided high resolution in the vicinity of the critical latitude. This, too, was suc- 
cessful, so it should not be inferred that the complex mapping described in the next 
couple of sections is the only way to cope with singular differential equations. 
However, artificial damping methods do distort the inviscid physics of the problem 
and require some trial-and-error and finesse to choose a damping coefficient large 
enough so that one can accurately solve the differential equation and at the same 
time small enough so that the computed eigenvalue is close to that for zero damp- 
ing. The complex mapping method avoids both raising the order of the differential 
equation and extrapolating dissipative eigenvalues to zero damping. 

3. COMPLEX MAPPING 

A second order differential equation of the form 

U*(Y) u.yy + U*(Y) U.” + 44Y) = 0 (3.1) 

where the y subscripts denote differentiation with respect to y can be transformed 
via the mapping 

y=f(x) (3.2) 

into 

4f Cxl) u 
[f’(x)]2 xx 

+ 
[ 

~Iy(c;lp*(f CxlIf”@) 
’ x [f WI3 I 

u,+u*(f[x])u=O (3.3) 

where f’(x) and f"(x) are the first and second derivatives of the ma&~function. 
The map (3.2) and transformation (3.3) are completely general and also’ describe 
the purely real-valued mappings used in Boyd [6] and in Tables III and IV. 

A useful complex mapping must satisfy several constraints. 
First, since the standard interval for the Chebyshev polynomials is x E [ - 1, 1 ] 

and the new contour of integration must pass through both boundary points, we 
impose 

f(-l)=A, f(l)= B. (3.4) 

Second, the transformation should introduce no additional singularities of u( f [xl). 
Third, the transformation should be as simple and smooth as possible. Four 
representative maps are shown in Fig. 1 and discussed in turn below. 
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The simplest choice is the parabolic map 

y=(A+B)/2+[(B-A)/2]{x+id(x2-1)). (3.5) 

With its single adjustable constant A, (3.5) is the most general parabolic mapping 
which is consistent with the constraints (3.4). Its simplicity makes it possible to 
invert (3.5) by solving a quadratic equation. This inversion does not need to be 
done in practice, however (except to optimize A), since the Chebyshev expansion 
converges rapidly only along that curve in the complex y-plane for which x lies on 
the real interval x E [ - 1, 11, so the eigenfunction must be computed by different 
means as explained below. 

The one remaining question is: Given the location of the critical latitude yc, what 
is the optimum value of the mapping parameter A? Unfortunately, a general 
analytic answer does not seem possible and some trial-and-error will be needed in 
most cases. However, when there is but a single critical latitude on or very near the 
real axis, it is possible to calculate and tabulate the most effective A as a function of 
y,; the result is given in Table I and justified in the next section. 

One complication is that there may be more than one critical latitude. The 
Bickley jet, for example, for which some results are given in Tables III and IV, is 
the wind profile 

U( y ) = -sech2( y) (3.6) 

which is symmetric about y = 0. This implies that for any choice of phase c, there 
will-be TWO critical latitudes such that V(y,) = c, which have equal modulus but dif- 
fer in complex phase by rc. The line of reasoning given in Boyd [4] shows that the 
branch cut from each critical latitude must pass to 0~) in the upper half-plane when 
dU/dy is positive (which includes (2.1)) and in the lower half-plane when dU/dy is 
negative. This implies that the contour of integration for (3.6) should pass below 
the red y-axis for+oaitiw y and above the real axis for y < 0. The simplest mapping 
that does this is the QA& 

y=+f+ae)/2+[(B-A)/2]{x+iAx(x2-1)). (3.7) 

The generalization to a larger number of critical latitudes is straightforward. 
Unfortunately, critical latitudes are not the only singuarities that a differential 

equation is likely to have in the complex plane. Equation (2.1) is atypical in this 
respect. The wind profile (3.6) generates an equation which is the more usual case: 
since sech(y) has poles at y = +irr/2, +_ i3k/2,..., the differential equation does also. 
These can cause major problems in choosing a suitable contour of integration 
because deforming the contour of integration ACROSS a branch point of the solution 
will effectively choose a new, unphysical branch and give a spurious answer. The 
research of one of the author’s students was an inadvertent case study of the need 
for care. The student, using a single rather large value of A in the mapping (3.6) for 
the mean wind U(y) = exp( -y’), obtained interesting unstable modes which had 
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FIG. 1. Four representative complex mappings. For each case, the real and imaginary y-axes are 
shown as solid lines, the transformed path as a dashed line, and the branch cut away from the 
singularity on the real axis is depicted as a cross-hatched line. (a) The solution to the differential 
equation has a branch point on the real axis, and no other singularities close to the interval [A, E]. (b) 
Two singularities on [A, 81 with branch cuts that must be taken in opposite half-planes (typical of a 
symmetric jet). (c) Identical with (a-my one branch point on [A, BJ-except for the additional com- 
plication of complex singularities which force the mapping to hug the real axis. (d) Identical with (a) 
except that interval of integration is infinite. The mathematical forms of these mappings are given by 
Eqs. (3.5), (3.7), (3.8) and (3.10) in the text. The crosses mark the location of the singularities of the dif- 
ferential equation. 

no critical latitudes near or on the real y-axis. Alas, the equation c = exp( -y’) has 
an ir@ite number of complex roots lying on two hyperbolas in the complex plane. 
One of the complex roots (and its mirror image) lay between the new contour (3.7) 
and the real axis, so the student found that all his intriguing instabilities dis- 
appeared when he reduced A. 

Another example is discussed and illustrated (Figs. 1 and 2) in Boyd and 
Christidis [3], Although physically fhe Rossby waves have a continuous spectrum, 
the complex mapping computes discrete modes anyway. The resolution of the 
apparent paradox is that the computed modes have phase speeds c with small, 
negative imaginary part, which implies that they have critical latitudes between the 
deformed contour of integration and the real axis, and thus are numerical artifacts. 

No general guide can be given except to note that sometimes simple mappings 
like the parabola and cubic above may need to be replaced by more complicated 
curves so that the new contour of integration skirts all the singularities of the dif- 
ferential equation, and not merely those that are critical latitudes. An interior boun- 
dary layer mapping such as 

(3.8) 



COMPLEX COORDINATE METHODS 461 

where LX+ 1 and c is the real part of y, may be useful when the differential equation 
has other singularities not too far from the real axis as well. For large ~1, the con- 
tour of integration makes but a short detour around the singularity and then hugs 
the real axis the rest of the way. 

This sort of mapping may not work with Chebyshev algorithms because a detour 
of narrow radius may leave the singularity close enough to the new contour of 
integration to still poison the convergence of the Chebyshev series. However, it 
should always work well for a finite difference method-to find the neutral curve of 
a stability problem, for example-because then one need only choose the grid spac- 
ing to be sufficiently small in comparison to l/a. 

The fourth example of a mapping shows the possibilities when the original com- 
putational domain is unbounded. Boyd [7] discusses real-valued mappings that 
transform an infinite or semi-infinite interval into a finite one, and also the alter- 
native of “domain truncation,” i.e., solving the problem on a large but finite interval 
without the use of a mapping. Either approach can be readily combined with the 
complex parabolic mapping introduced here. For example, to solve an equation like 

u,+ [l/y-A-y2]u=0 for y~[-co, co] with u(&co)=O, (3.9) 

one can use the mapping 

Lx 
Y=(1~x*)l,*+~~(x2-l). (3.10) 

(Note that the square root was inadvertently omitted in (5.13) of Boyd [7], which 
gives the inverse to the real part of the mapping in (3.10).) 

The reader can doubtless invent his own variations, but the point is that paths of 
integration can be devised to deal with almost any combination of critical latitudes 
and other singularities of a differential equation. In the next section, we will deal 
with the harder question of how to optimize the disposable parameters of the map- 
ping. 

4. OPTIMIZING THE MAPPING 

Choosing a good value of the map parameter A for a finite difference method is 
easy: pick the real and imaginary parts of A so that the contour is two to three grid 
points away from the singularity. For the parabolic mapping, for example, the 
imaginary part of y is largest at x = 0, and one would like this to correspond to the 
real part of y, so that the contour is at its greatest distance from the real y-axis at 
the point where this separation will do the most good. Since 

where A, and Ai, are the real and imaginary parts of A, respectively, it follows that, 
letting h be the grid spacing in x and assuming that critical latitude y, is on the real 

m/57/3-10 
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y-axis, we can obtain a maximum separation of the old and new integration paths 
of 2h, directly opposite the singularity, by taking 

A, = 2h; A,, = -y,.. (4.2) 

Since this article was originally motivated by the limitations of Chebyshev 
algorithms, it is ironic that complex mapping should in some ways work even better 
for finite difference methods. Because the justification of a finite difference method is 
a local Taylor series expansion whose radius of convergence need extend only to the 
next grid point, one can employ a complex contour like that suggested in (4.2) 
which bends only a small distance (62h) away from the real axis. This hugging-of- 
the-real-axis avoids the problem of other complex singularities of the differential 
equation which can be a major complication for Chebyshev methods as explained 
in the previous section. On the other hand, it is still proper that this paper should 
emphasize Chebyshev algorithms: finite difference methods need the complex map- 
ping trick only when the critical latitude is on the real axis itself (the “neutral 
curve”) or when it is within 2h of the real axis where h is the smallest affordable 
grid spacing. 

Chebyshev methods are less robust, and the proof follows from the well-known 
formula [7] that the coefficients of a Chebyshev series are asymptotically of the 
form 

6, w (constant) n -k6 -’ (4.3) 

where k and 6 are constants. The algebraic factor of n is much less important than 
the term involving 6 and will be ignored hereafter; parenthetically, it can be noted 
that k = 0 for a simple pole, k = 1 for a logarithm, and so on. 

The constant 6 is given by 

6=Sf(S*-l)i’* (4.4) 

where S is the (complex) location of the convergence limiting singularity and where 
the sign in (4.4) is that which makes 161 > 1. Ignoring the algebraic factor nPk and 
exploiting the well-known bound on the Chebyshev polynomials [9], 1 T,(x)1 < 1 
for all n and all real x E [ - 1, 11, it follows that (asymptotically) a Chebyshev series 
converges like a geometric series. (More precisely, it can be tightly bounded from 
above by .a geometric series.) 

It is instructive to consider the special case of a singularity very close to the real 
axis. After shifting from [A, B] to the standard interval of [ - 1, l] via 

xc=WCB-AlHYc- L-~+w2~~ (4.5) 

the location of the singularity is 

xc= X+iz; -l<x<l,&+l. (4.6) 
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One can then show, using the equivalent form 6 = exp[arccosh(S)], that 

6-l + ‘s’ 
sin[cos-l(X)]’ (4.7) 

provided that X is not within O(E) of f 1. 
Equation (4.6) shows that a singularity close to the interval of integration will 

invariably wreck a Chebyshev method unless the complex mapping or some other 
trick is used. If E = l/100, for example, then N= 100 polynomials will suffice to 
make the last retained coefficient, blW, smaller than b,, by only about a single factor 
of e = 2.718. And yet, for the QR algorithm, which has an operation count of 
O(N3), taking N even this large is extremely expensive. Put another way, to obtain 
good results with an unmodified Chebyshev method, one must choose N sufficiently 
large so that N/E+ 1, which is usually too expensive unless EN0( l), i.e., the 
singularity is so far from the real axis that it does not matter. 

TABLE I 

Optimum Values of A’ 

Y, 6 MA) WA) 

0.0 2.41 0.500 0.0 
0.1 2.40 0.500 0.050 
0.2 2.39 0.490 0.100 
0.3 2.34 0.480 0.150 
0.4 2.31 0.460 0.200 
0.5 2.26 0.450 0.260 
0.6 2.23 0.400 0.300 
0.7 2.11 0.370 0.360 
0.8 2.04 0.300 0.400 
0.85 1.94 0.265 0.430 
0.90 1.84 0.220 0.455 
0.95 1.69 0.150 0.480 
0.98 1.54 0.100 0.492 
0.99 1.43 0.0712 0.499 
0.998 1.27 0.0312 0.500 

a Optimum values of the map parameter 
A = Re(A) + i Im(A) for various locations of the critical 
latitude y, along the real axis where the new coordinate 
x is related to the original coordinate y via y= x+ 
iA(x*- 1). Note that it is assumed that the com- 
putational domain has been normalized to ye[ -1, 11. 
Note also that Aop,( y,) = Aopt( -y,), so only y, > 0 need 
be listed. The error E, in the Chebyshev series in x 
decreases geometrically with N where N is the number 
of Chebyshev polynomials retained in the truncation; 
6 = E.dE,v+ I when the corresponding optimum A is 
used in the mapping. 
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Computing that value of the map parameter A which makes 6 as large as possible 
is analytically difficult but numerically easy: one merely evaluates 6(A) from (4.4) 
for various A and a particular location of the singularity to see which A works best. 
One can simplify the task by noting that (4.4) is symmetric about S = 0, which 
means that it is sufficient to consider Re(y,.) > 0, and also that one can always 
rescale the interval to [ - 1, l] as in (4.5). If we make the additional restriction of 
real y,, since singularities on the real axis are the worst, it is then enough to 
examine singularities located on the real interval [0, l] alone. 

Table I shows the results for the parabolic mapping (3.5). What is remarkable is 
that for Ix,1 <0.8, it is possible to achieve 6 > 2.&in other words, with the 
optimized mapping, each successive Chebyshev coefficient is (asymptotically) less 
than half its predecessor so that one is roughly halving the error with each 
additional term kept in the series. Table II shows that it is possible to achieve these 
good results in practice: the lowest eigenvalue for (2.1), for example, is computed to 
an accuracy of better than 1 part in 100,000 with just ten Chebyshev basis 
functions. 

Even when the singularity is rather near the boundaries, Table I shows that one 
can still obtain fairly good results. Although the “wall modes” of the Orr- 
Sommerfeld equation do have critical latitudes close to the endpoints, it is possible 
that complex mapping would improve numerical efficiency in spite of the warning 
given in Section 2. The reason for this success near x = 1 in Table I is that the 
Chebyshev polynomials oscillate more and more rapidly near f 1; they have a 
“built-in quadratic variable stretching” near the endpoints as discussed in Boyd 
[lo]. Crude curve-fitting suggests that 

6-l +1.3(1-xx,.)“4; A-(1/2)i+O.7(1-~,)“~ (4.8) 

for 11 - x,1 6 1, but no attempt has been made to justify (4.8) analytically because a 
refined approximation to the limits as x, + 1 would be useful only where the com- 
plex mapping would fail, and one would be forced to use viscous damping instead. 
Nonetheless, Table I shows that one can go very close to the boundaries without 
sacrificing the benefits of the complex change of coordinates. 

5. NUMERICAL ILLUSTRATIONS 

Table II presents the lowest ten eigenvalues for (2.1) as computed using the 
parabolic mapping with optimum A. The Chebyshev-QR algorithm employed is 
identical to that described in Boyd [lo, 111 except that the differential equation 
(2.1) was first transformed via (3.2) and (3.5). The complex mapping is a striking 
success. In the absence of the transformation, the Chebyshev series of u(y) does not 
converge because u(y) has a logarithmic singularity at y = 0, so the pseudospectral 
method fails. With the mapping, however, it is possible to compute the lowest 
eigenvalue to an accuracy of 1.4 % with just six basis functions. 
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A rough rule-of-thumb in nonsingular Sturm-Liouville problems of the first kind 
is that when N Chebyshev basis functions are used, O(N/2) of the eigenvalues of the 
resulting N x N matrix will be good approximations (to within a few percent) of 
eigenvalues of the original differential equation. The larger half of the numerical 
eigenvalues will be wildly inaccurate. Table II shows that the price that is paid for 
the singularity is that the rule-of-thumb must be amended to read that for a Sturm- 
Liouville problem of the fourth kind, only O(N/4) of the matrix eigenvalues will be 
reasonable approximations to those of the differential equation. 

This is still a vast improvement over none, however. As explained in Boyd [4], 
the WKB method gives excellent analytic approximations to the large eigenvalues, 
so one only needs to compute the lowest few via Chebyshev polynomials anyway. 
Thus, the complex mapping has turned a numerical disaster into a rather easy and 
inexpensive means of computing all the important eigenvalues. 

Table II is also a dramatic, if personally embarrassing, justification of the 
jeremiad against local, iterative methods given in the introduction. A local, fmite 
difference-cum-secant iteration missed the third and the seventh modes listed in 
Table II. Table IV and Fig. 10 of an earlier work by the author [4] are both 
incorrect in that these two eigenvalues were omitted. The suggestion that the mode 
number could be different from the integer m that appears in the WKB formula for 
a given mode is cast in doubt since the two extra modes destroy Table IV as an 
example of such behavior. Happily, all the other conclusions of Boyd [4] are unaf- 
fected by this mistake. 

The results of the earlier paper were computed by careful use of the so-called 
“continuation method,” varying the parameters in small steps away from a set of 
eigenvalues calculated using a linear friction/interior boundary layer mapping (and 
60 basis functions!) as in Boyd [7]. However, eigenvalues with small imaginary 
parts-true of both missed modes-are difficult to compute by iteration because the 
eigenfunction jumps to a different branch when the sign of the imaginary part of 1 
reverses, so the radius of convergence of any iterative procedure goes to 0 with 
Im(1). Thus, the singularity of the eigenfunction which wrecks the Chebyshev-QR 
algorithm also greatly weakens the competing local iterative methods. Although safe 
enough, if used wisely, for self-adjoint, nonsingular Sturm-Liouville problems of the 
first kind, local finite difference iterative algorithms are very risky and liable to miss 
modes when applied to the much harder case of singular Sturm-Liouville problems 
of the fourth kind or to hydrodynamic instability equations-as the author learned 
to his sorrow. 

Boyd [7] explored the usefulness of purely real mappings for solving problems 
via Chebyshev polynomials on an unbounded interval on the basis of Chebyshev 
convergence theory without providing any explicit examples. To remedy this lack of 
examples and simultaneously illustrate the principle that complex mappings are 
unnecessary for strong instability, Tables III and IV show calculations with various 
values of the map parameter L or domain size L, respectively, for the “Bickley jet” 
problem of barotropic stability. (Haltiner and Williams [ 123 give a good discussion 
of the physics of this example.) Because the differential equation is symmetric about 
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TABLE III 

The Eigenvalue c” 

L 

Symmetric mode Antisymmetric mode 

C rel. error (%) c rel. error (%) 

Exact 

10 

5 

2 

1 

0.75 

0.50 

0.25 

-0.700764 
+i 0.190689 

- 0.6692 
+i 0.1902 

-0.699084 
+i 0.19197 

-0.700571 
+i 0.190585 

-0.700398 
fi 0.190350 

- 0.705 
+i 0.1888 

-0.687 
+i 0.229 

-0.787731 
+i 0.042011 

No unstable modes 

-4.5 -0.735 
0.23 +i 0.0815 

- 0.24 -0.764 
-0.13 +i 0.0518 

-0.027 -0.7938 
0.055 +i 0.0474 

-0.052 -0.78517 
0.18 fi 0.0478 

0.71 -0.7958 
0.99 fi 0.0454 

-1.9 -0.7857 
- 20.0 +i 0.0304 

-6.7 
-94.0 

-3.0 
-23.3 

0.77 
- 12.9 

-0.33 
- 13.8 

1.0 
-8.1 

-0.25 
27.6 

a The eigenvalue c for the two unstable modes of the Bickley jet [ 123 with U(y) = -sech*(y), /I = 0.4, 
k = 1.0 (all nondimensional) as computed with 20 Chebyshev basis functions (10 symmetric and 10 
antisymmetric) and the mapping y = Lx/( 1 - x~)“~ where x is the argument of the Chebyshev 
polynomials. These values of the zonal wavenumber k and parameter B give the largest growth rates for 
any k, /3 [ 121, so the complex coordinate transformation is unnecessary. 

y = 0, one can halve the number of basis functions by using only symmetric 
Chebyshev functions to compute the unstable mode which is symmetric about 
y = 0, and similarly only antisymmetric functions to find the antisymmetric eigen- 
value. Note that although only ten basis functions of the proper symmetry are used, 
excellent results can be obtained with the proper choice of L because the disposable 
parameters /I? and k of the differential equation were chosen to correspond to the 
region of Zargest instability as shown in [12]. 

As predicted by the theory of Boyd [7], both algebraic mapping and domain 
truncation work, but the mapping is more successful here because, again as shown 
by the theory, it is much less sensitive than “domain truncation” to the criticial 
latitude singularities for complex y, and also much more indifferent to the choice of 
the parameter L. Even though the singularities for this choice of parameters are suf- 
ficiently far from the real axis so that we can solve the problem without a complex 
transformation, the critical latitudes still control the choice of numerical 
method-in the absence of singularities, Boyd [7] shows that domain truncation 
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TABLE IV 

The Eigenvalue cL? 

L 

Symmetric mode Antisymmetric mode 

C Rel. error (%) c Rel. error (%) 

10 No unstable modes 

5 - 0.6709 -4.3 -0.736 6.6 
+i 0.1919 -0.63 -0.081 93.0 

2 - 0.6478 -7.6 Stable 
+i 0.1684 13.6 

1 -0.672 -4.1 Stable 
0.041 78.5 

Exact -0.7008 -0.788 
fi 0.1907 +i 0.042 

a Same as Table III (two unstable modes of the Bickley jet) except that domain truncation-solving 
the problem on the domain y E C-L, L] such that u( +L) = f&was used instead of mapping originals of 
tables. 

gives more accurate results. When the parameters are changed to bring us close to 
the neutral curve where the eigenvalue c is real, both algebraic mapping and 
domain truncation are ruined. By combining them with the complex mapping as 
suggested in Section 3, however, we can follow a mode right up to the neutral curve 
without trouble-and using only a small number (O( 10)) of basis functions. 

6. COMPUTING THE EIGENFUNCTIONS 

As noted earlier, the use of a complex contour of integration makes it impossible 
to directly compute the eigenfunctions on the real y-axis. This is obvious for a finite 
difference method since it calculates u(y) only on the grid points, and these are now 
complex. It is less obvious for a spectral method since the Chebyshev series can be 
evaluated with a complex argument in the map variable x to give u(y) for real y. 
Unfortunately, this does not work because the Chebyshev series must diverge at all 
singularities. If the eigenfunction has a branch point for real y, then the Chebyshev 
series will still fail utterly in the neighborhood of the branch point even though it 
converges rapidly on the complex integration path where its argument x is real. 

One is left with two options: to be satisfied with only the eigenvalues or to com- 
pute the eigenfunctions in a second, separate step of solving an ordinary boundary 
value problem. 

The first alternative, computing the eigenvalue only, is often painless because the 
eigenvalue is the only quantity of physical interest anyway. In the “Bickley jet” 
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barotropic stability problem [12], for example, Haltiner and Williams give a con- 
tour plot of the eigenvalue for all values of the parameters and graph the neutral 
curve. The region of small growth rates and the neutral curve cannot be calculated 
via a Chebyshev-QR algorithm without the complex change of coordinates. 
However, their graphs of sample eigenfunctions are only for the fastest growing 
modes-and we have already seen in Tables III and IV that the strongly unstable 
modes can be computed without the complex transformation. 

Alternatively, once the eigenvalues are known, the eigenfunctions can be found 
one at a time by solving an ordinary boundary value problem. The latter is much 
easier than an eigenvalue problem, so the complex mapping is valuable in cutting 
the problem down to size even when the eigenfunctions are needed, too. 

In particular, the QR algorithm requires roughly 0(10N3) operations to find the 
eigenvalues of an N x N matrix. In contrast, a boundary value problem generates an 
ordinary matrix equation which can be solved by Gaussian elimination in O(N3/3). 
This means that if the singularity is not right on the real axis, but only close to it, 
one can compute the eigenvalues via N Chebyshev polynomials with complex map- 
ping and then compute the most unstable eigenfunction by solving a boundary 
value problem on the real axis with triple the number of polynomials, and still keep 
the cost of the second step under that of the QR step. Using 3N polynomials in a 
brute force attempt to compute the eigenvalues and eigenfunctions together via the 
Chebyshev-QR algorithm without complex mapping would be roughly 15 times 
more expensive. 

When the offending singularity is actually on the real axis, as it is for 
hydrodynamic instability problems on the neutral curve and for Sturn-Liouville 
problems of the fourth kind, stronger measures are needed. One possibility is to 
combine a finite difference method with the local, Gaussian complex mapping 
described by (3.8) above. The Gaussian map hugs the real axis except within one or 
two mesh points of the singularity. If the mesh is fine enough-and it can be 
variable, if desired-a smooth graph can be made with extrapolation from one side 
of the singularity to the other, using only grid points on the real axis. 
(Parenthetically, it should be noted that in the problems of Boyd [6], the 
singularities are of the form y log y or log y, depending on the quantity, so that one 
can make smooth, useful graphs in spite of the real-axis singularities.) Because of 
(4.7) above, this device of making a semi-circular detour of very small radius will 
work only with a grid point method. 

A final remedy, which can be applied with either finite difference or Chebyshev 
methods, is to use a local power series approximation in the neighborhood of the 
singularity and match it to finite difference or Chebyshev series that handle the rest 
of the interval. This procedure, in conjunction with a Runge-Kutta shooting 
method, was used to calculate the “exact” solutions of Boyd [4], for example. This 
matching procedure is messy; in combination with Chebyshev polynomials, one 
ends up with three separate series (two Chebyshev flanking one power series with 
logarithms), each representing the same function on a different interval. Since the 
power series coefficients normally depend nonlinearly on the eigenvalue, it is 
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usually not possible to convert such a hodge-podge of different series into a linear 
eigenvalue problem, so the QR method cannot be used and one is again forced 
back to local, iterative methods to solve the resulting algebraic equations. These, as 
stressed above, require first guesses for the solution and may easily miss modes. 
However, if the eigenvalues are already known from a calculation using complex 
mapping, then these difficulties disappear and calculating the eigenfunctions this 
way is straightforward and safe. 

Thus, the complex mapping method does not make it impossible to calculate the 
eigenfunctions; rather, it makes it easy since one has a very wide range of options 
once the eigenvalues are known. The price that must be paid for the complex 
change of coordinates is that the eigenvalues and eigenfunctions, if both are needed, 
must be calculated in two separate steps. 

7. SUMMARY AND CONCLUSIONS 

The value of a change of coordinates for resolving boundary layers [ 131 or an 
unbounded interval [7] is well known. What we have tried to show here is that a 
complex change of coordinates such that the differential equation is integrated 
along a curve in the complex plane rather than along the real axis is an equally 
powerful technique for computing the eigenvalues of inviscid hydrodynamic 
stability problems and others that have singularities (“critical latitudes” or “critical 
levels”) on or near the original real interval. 

The choice of the mapping is very flexible; some suggestions are given in Sec- 
tion 3 above. The complex transformation is particularly useful with Chebyshev 
methods since these, as a price for their high accuracy and efficiency, are very sen- 
sitive to singularities. The idea is quite general, however, and can be usefully 
applied with finite difference methods as well. Although it seems difficult or 
impossible to analytically optimize different species of mapping, Table I shows that 
it is possible to obtain some useful guidelines for the map parameters with very lit- 
tle effort. 

The great strength of the complex mapping is that it veers the path of the 
integration away from the singularity so that it is as if the singularity never was. Its 
major disadvantages are (i) the lack of a general theory for optimizing the map- 
pings (but see Table I), (ii) the need to avoid deforming the new path of integration 
across other complex singularities of the differential equation, and (iii) the need to 
compute the eigenfunctions as a second, separate step. 

Still, differential equations with singularities right on the interval of integration 
are very difficult. The complex change of coordinates is a very practical and concep- 
tually simple means for coping with these singularities. 
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